CP-91,243 AND CP-91,244, NOVEL DIGLYCO-SIDE POLYETHER ANTIBIOTICS RELATED TO UK-58,852 AND PRODUCED BY MUTANTS OF Actinomadura roseorufa

J. P. DIRLAM[†], W. P. CULLEN, L. H. HUANG, T. H. NELSON, J. R. OSCARSON,

L. PRESSEAU-LINABURY, E. J. TYNAN and E. B. WHIPPLE

Central Research Division, Pfizer Inc., Groton, CT 06340, U.S.A.

(Received for publication March 18, 1991)

Interest in polyether antibiotics has remained at a high level for over 20 years, owing largely to the commercial importance of this class of drugs in veterinary medicine. For example, monensin¹⁾, lasalocid¹⁾ and salinomycin²⁾ are marketed as anticoccidial agents for poultry, and are used as growth permittants in cattle or swine. Narasin¹⁾ and maduramicin³⁾ are also used as anticoccidial agents.

Following the discovery of the attractive, semisynthetic anticoccidial ionophore semduramicin^{4,5)} (UK-61,689), a mutation program was undertaken that was designed to produce this polyether antibiotic by direct fermentation⁶⁾. The producing culture of the antibiotic UK-58,852, was chosen as the parental strain to be mutagenically treated to induce a semduramicin producing mutant^{7,8)}. The two compounds differ from each other in that the A-ring glycone of UK-58,852 has been replaced by a hydroxyl group in semduramicin (Fig. 1).

This paper describes the unexpected formation of two new polyether antibiotics, CP-91,243 and CP-91,244 (Fig. 1), isolated from the fermentation broths of two mutants (ATCC 53869 and ATCC 53870) of *Actinomadura roseorufa* (ATCC 53666). The isolation, characterization, and biological testing of these new antibiotics, which were coproduced with the parent antibiotic UK-58,852,

Fig. 1. The structures of UK-58,852, CP-91,243, CP-91,244 and semduramicin.

[†] A part of this work has been presented at the 2nd S.I.M. Int. Conf. on Biotech. Prod. of Microb. with Novel Pharmacolog. and Agrobio. Activities, Abstract No. P-14, p. 31, Sarasota, FL, October $14 \sim 17$, 1990.

1263

are discussed.

CP-91,243, CP-91,244 and UK-58,852 were produced by microorganisms obtained from the mutation of a strain of *A. roseorufa* ATCC 53666 with 1-methyl-3-nitro-1-nitrosoguanidine, as described elsewhere⁹). Using the isolation method shown in Scheme 1, a 15-liter fermentation broth using A. roseorufa ATCC 53870 afforded 1.20 g of CP-91,243, 480 mg of CP-91,244 and 190 mg of UK-58,852. A second mutant culture (ATCC 53869) also yielded CP-91,243 (280 mg), CP-91,244 (850 mg) and UK-58,852 (1.50 g). TLC analysis with silica gel plates using CHCl₃-methanol (9:1) gave the following Rf values: 0.2 for CP-91,243, 0.4

Scheme 1. Isolation and purification of CP-91,243, CP-91,244 and UK-58,852.							
Fermentation broth							
(15 liters; Actinomadura roseorufa ATCC 53870)							
extract with 15 liters of							
methyl isobutyl ketope (MIBK)							
I I Spent aqueous MIBK extract							
	evaporate under vacuum						
Concentrate, 17 g (oil)							
	silica gel column						
	(700 g of silica gel)						
		СНСІ ₃ - МеОН (19:1)					
Early fractions	Mi	id-fractions	La] ate fractions			
			~				
Concentrate, 2.5 g		oncentrate, 3.5 g	C	hcentrate, 5.0 g			
silica gel column		silica gel column		silica gel column			
EtOAc		EtOAc		EtOAc			
Concentrate	Co	i oncentrate	C	oncentrate			
crystallize		crystallize		crystallize			
from hexane		from EtOAc		from EtOAc			
UK-58,852 Na-salt	CI	P-91,244 Na-salt	С	P-91,243 Na-salt			
(190 mg)	(480 mg)	((1.20 g)			

Table	1.	Physico-chemical	properties	of C	CP-91,243	Na-salt	and	CP-91,244	Na-salt.
-------	----	------------------	------------	------	-----------	---------	-----	-----------	----------

Property	CP-91,243 Na-salt	CP-91,244 Na-salt			
MP (°C)	178~180	154~157			
$[\alpha]_{D}^{25}$ (c 1.0, MeOH)	-7.6°	-4.8°			
Empirical formula	$C_{50}H_{83}O_{18}Na$	$C_{51}H_{85}O_{18}Na$			
МŴ	995.1	1,009.1			
Elemental analysis					
Calcd for:	$C_{50}H_{83}O_{18}Na \cdot H_2O$	C ₅₁ H ₈₅ O ₁₈ Na			
	C 59.22, H 8.47	C 60.65, H 8.59			
Found:	С 59.22, Н 8.23	C 60.41, H 8.58			
IR (KBr) cm ⁻¹	3280, 2980, 2910, 2865, 1583 (-CO ₂ Na), 1455, 1375, 1240, 1160, 1130, 1120, 1060, 980, 940	3260, 2975, 2930, 2865, 1610 (-CO ₂ Na), 1455, 1380, 1160, 1120, 1100, 1065, 980, 940			
Solubility					
Soluble:	Organic solvents	Organic solvents			
Insoluble:	H ₂ O	H ₂ O			

Table 2. ¹³C and ¹H NMR chemical shift data for the Na-salts of CP-91,243, CP-91,244, UK-58,852 and semduramicin in CDCl₃.

	CP-91,243		CP-91,244		UK-S	58,852	Semduramicin	
Carbon	¹³ C	1H	¹³ C	¹ H	¹³ C	¹ H	¹³ C	¹ H
	Shift ^a	Shift ^b						
1	179.33 (0)		179.25 (0)		179.19 (0)		179.09 (0)	
2	45.06 (2)	2.10, 2.47	45.55 (2)	2.15, 2.49	45.74 (2)	2.11, 2.47	45.38 (2)	2.17, 2.49
3	97.91 (0)		97.91 (0)		97.16 (0)		97.70 (0)	<u> </u>
4	44.50 (1)	1.37	44.62 (1)	1.44	44.79 (1)	1.44	45.28 (1)	1.48
5	81.72 (1)	3.67	81.68 (1)	3.79	81.73 (1)	3.74	74.74 (1)	3.71
6	82.35 (1)	3.09	82.44 (1)	3.16	82.58 (1)	3.13	81.95 (1)	3.11
7	67.53 (1)	3.63	67.37 (1)	3.67	67.39 (1)	3.65	66.80 (1)	3.73
8	33.25 (1)	1.92	33.41 (1)	1.98	33.54 (1)	1.96	33.74 (1)	1.98
9	67.79 (1)	4.08	67.69 (1)	4.21	67.73 (1)	4.18	67.61 (1)	4.23
10	33.62 (1)	1.76	33.58 (1)	1.79	33.66 (1)	1.73	33.54 (1)	1.81
11	69.90 (1)	3.84	70.04 (1)	3.91	70.19 (1)	3.88	70.03 (1)	3.92
12	33.62 (2)	1.55, 1.86	33.78 (2)	1.60, 1.88	33.90 (2)	1.60, 1.87	33.77 (2)	1.62, 1.90
13	107.32 (0)		107.48 (0)		107.59 (0)		107.45 (0)	
14	38.85 (2)	1.66, 1.93	38.89 (2)	1.68, 1.98	38.96 (2)	1.67, 1.92	38.89 (2)	1.73, 1.97
15	33.35 (2)	1.71, 1.90	33.41 (2)	1.75, 1.98	33.48 (2)	1.69, 2.01	33.39 (2)	1.76, 1.98
10 .	84.74 (0)	2.40	84.53 (0)	2.54	84.55 (0)	2.50	84.51 (0)	
1/	82.21(1)	3.49	82.27(1)	3.54	82.43 (1)	3.50	82.28 (1)	5.55
10	20.90(2)	1.42, 1.03	20.00(2)	1.40, 1.09	20.83(2)	1.42, 1.03	20.85(2)	1.4/, 1./1
20	32.23 (2) 84.13 (0)	1.44, 2.34	32.22 (2) 84 15 (0)	1.40, 2.39	32.31 (2) 84.20 (0)	1.41, 2.37	32.23 (2) 84.15 (0)	1.50, 2.40
20	86.95 (1)	3.03	86.96 (1)	4.03	87.08 (1)	4.01	86.96 (1)	4.02
21	80.97 (1)	4 13	80.89 (1)	4.05	80.94 (1)	4.01	80.90 (1)	4.05
23	3232(2)	2.17	32.45(2)	2 25	3254(2)	2 21	32.47(2)	2 23
23	79.94(1)	4.43	80.22 (1)	4 49	80.34 (1)	4 46	80.22 (1)	4 49
25	73.36 (1)	3.80	72.98 (1)	3.92	73.05 (1)	3.90	73.01(1)	3.93
26	32.93 (1)	1.17	33.11 (1)	1.22	33.21 (1)	1.19	33.11 (1)	1.23
27	36.32 (2)	1.25, 1.30	36.41 (2)	1.30, 1.40	36.54 (2)	1.28, 1.35	36.40 (2)	1.32, 1.42
28	39.62 (1)	1.40	39.82 (1)	1.42	39.97 (1)	1.38	39.81 (1)	1.43
29	96.95 (0)	_	96.88 (0)		96.93 (0)		96.89 (0)	
6-OCH ₃	59.72 (3)	3.43	59.66 (3)	3.49	59.58 (3)	3.45	59.03 (3)	3.52
4-CH ₃	12.23 (3)	0.96	12.38 (3)	1.01	12.40 (3)	0.99	12.10 (3)	1.03
8-CH ₃	10.88 (3)	0.98	11.06 (3)	1.05	11.04 (3)	1.01	11.05 (3)	1.08
10-CH ₃	10.21 (3)	0.78	10.34 (3)	0.83	10.40 (3)	0.79	10.43 (3)	0.84
16-CH ₃	27.34 (3)	1.43	27.58 (3)	1.48	27.65 (3)	1.44	27.56 (3)	1.49
20-CH ₃	23.19 (3)	1.07	23.22 (3)	1.11	23.24 (3)	1.08	23.25 (3)	1.12
26-CH ₃	17.28 (3)	0.79	17.47 (3)	0.85	17.48 (3)	0.82	17.51 (3)	0.87
28-CH ₃	16.77(3)	0.83	17.28 (3)	0.90	16.96 (3)	0.86	16.99 (3)	0.91
29-CH ₃	$(Dac)^{(3)}$	1.23	26.02 (3)	1.26	26.06 (3)	1.24	26.05 (3)	1.29
	$(De0)^{1}$	162	102 40 (1)	1 60	102 41 (1)	A (5		
2'	102.47(1)	137 104	102.40(1)	4.00	102.41(1)	4.05		
2'	31.13(2) 31.29(2)	1.37, 1.94	31.40(2)	1.30, 1.91	31.10(2) 27.30(2)	1.40, 1.07		
<u>4</u> ′	71.03(1)	3 11	71.53(1)	3 22	80.58 (1)	2 76	_	
5'	75.68 (1)	3.14	75.63 (1)	3.20	74.44(1)	3 24		_
4'-OCH	, 5.00 (1) —		, 5.05 (1)		56.78 (3)	3.30		
5'-CH,	17.83 (3)	1.17	18.03 (3)	1.24	18.28 (3)	1.19		
1″	103.33 (1)	4.37	103.19 (1)	4.40	103.22 (1)	4.38	103.22 (1)	4.41
2″	30.92 (2)	1.51, 1.70	30.54 (2)	1.51, 1.78	30.62 (2)	1.51, 1.75	30.55 (2)	1.53, 1.80
3″	30.77 (2)	1.37, 1.94	26.91 (2)	1.30, 2.17	26.99 (2)	1.25, 2.14	26.92 (2)	1.31, 2.18
4″	70.50 (1)	3.12	79.84 (1)	2.75	79.95 (1)	2.76	79.83 (1)	2.81
5″	75.90 (1)	3.19	74.57 (1)	3.29	74.67 (1)	3.24	74.57 (1)	3.31
$4''-OCH_3$		·	56.82 (3)	3.33	56.82 (3)	3.30	56.86 (3)	3.36
5"-CH ₃	17.97 (3)	1.19	18.36 (3)	1.23	18.40 (3)	1.20	18.38 (3)	1.24

^a In ppm from TMS in CDCl₃ solution; number of attached protons in parentheses.
^b In ppm from TMS in CDCl₃ solution.
^c 4-Methylamicetose.

for CP-91,244 and 0.7 for UK-58,852. The antibiotics were visualized by spraying with vanillin-EtOH - H_2SO_4 reagent and heating the TLC plate to 100°C.

The physico-chemical properties of CP-91,243 Na-salt and CP-91,244 Na-salt are given in Table 1. Spectroscopic data and elemental analyses were consistent with $C_{50}H_{83}O_{18}Na$ for the Nasalt of CP-91,243, and $C_{51}H_{85}O_{18}Na$ for the Na-salt of CP-91,244. For example, in the positive FAB-MS, diagnostic cationized molecules m/z 996 ((M+Na)⁺) and 1,010 ((M+Na)⁺) were detected for CP-91,243 and CP-91,244, respectively. Furthermore, both antibiotics gave base peaks 62 daltons less than the corresponding metal-adduct molecular ion, which is common for polyethers having a β -hemiketal carboxylic acid group ((M + Na - CO₂ - H₂O)⁺)¹⁰.

In our efforts to elucidate the structures of CP-91,243 Na-salt and CP-91,244 Na-salt by NMR, we used UK-58,852 and semduramicin, which is devoid of a deoxy (Deo) sugar on the A-ring, as model compounds. Spectra were recorded on a Bruker WM-250 spectrometer (modified to incorporate a pulse programmer and Aspect-3000 data system) and a Bruker AM-500 spectrometer. Using ¹³C DEPT, COSY and HETCOR experiments in a manner previously described¹¹ for the structure elucidation of ionophore CP-84,657, the structure of semduramicin Na-salt was systematically assigned (Table 2), except for three methylene units which were based partly on a comparison with the unambiguous assignments reported for monensin A^{12} . The resulting shifts for C-14 ($\delta_{\rm C}$ 38.89), C-15 $(\delta_{\rm C} 33.41)$ and C-27 $(\delta_{\rm C} 36.41)$ correspond to values of $\delta_{\rm C}$ 39.28, 33.25 and 35.75, respectively, in monensin A. Most of the assignments given in Table 2 for the other model compound, UK-58,852, were obtained independently, including the Deo sugars on the A- and E-rings.

The ¹³C and ¹H NMR spectral data for CP-91,243 Na-salt revealed that two methoxy groups were absent from the parent antibiotic UK-58,852, while in the CP-91,244 Na-salt, only one methoxy group was missing. The structure of CP-91,244 Na-salt was independently assigned, whereas the assignments for CP-91,243 Na-salt were determined by analogy with the other structures studied (Table 2). Based on these NMR results, CP-91,243 Na-salt bears hydroxy groups at the 4' and 4" positions of the Deo moieties, whereas CP-91,244 Na-salt is *O*-demethylated at only the 4'-position (Fig. 1). As summarized in Table 2, excellent agreement was observed for the ¹³C and ¹H chemical shift assignments of all four polyether antibiotics. Furthermore, the ¹³C chemical shifts found for the *O*-demethylated Deo sugars in CP-91,243 Na-salt and CP-91,244 Na-salt are similar to reported values¹³⁾. In view of the results obtained in the present study, the relative and absolute stereochemistry for CP-91,243 and CP-91,244 are assumed to be the same as that shown for UK-58,852 in Fig. 1, which was previously determined by X-ray crystallography⁷⁾.

Both CP-91,243 and CP-91,244 exhibited *in vitro* antibiotic activity against certain Gram-positive bacteria, and the spirochete, *Treponema hyody-senteriae* (the causative agent of swine dysentery), but were not active against Gram-negative bacteria. CP-91,243 afforded anticoccidial activity against *Eimeria tenella* in chickens at 60 mg/kg in feed, and the less polar CP-91,244 was about twice as active (25 mg/kg in feed). Salinomycin²⁾, a commercial anticoccidial agent that was used as a positive control drug, gave activity at 60 mg/kg in feed.

Acknowledgments

The authors are grateful to Ms. D. M. RESCEK for recording NMR spectra, and Dr. J. G. STROH for FAB-MS data. We thank Mr. C. P. CORNELL for the antimicrobial assays and Ms. D. M. NEWCOMB (Pfizer Animal Health, Terre Haute, IN) for conducting the anticoccidial studies.

References

- RUFF, M. D.: Chapter 6. Veterinary applications. In Polyether Antibiotics. Naturally Occurring Acid Ionophores. Volume 1: Biology. Ed., J. W. WESTLEY, pp. 303~332, Marcel Dekker. Inc., 1982
- MIYAZAKI, Y.; M. SHIBUYA, H. SUGAWARA, O. KAWAGUCHI, C. HIROSE, J. NAGATSU & S. ESUMI: Salinomycin, a new polyether antibiotic. J. Antibiotics 27: 814~821, 1974
- PENTO, J. T.: Maduramicin. Drugs Future 12: 756~757, 1987
- GOUDIE, A. C. & N. D. A. WALSHE (Pfizer): Polycyclic ether antibiotic. U.S. 4,804,680, Feb. 14, 1989
- 5) GLAZER, E. A.; W. P. CULLEN, G. M. FRAME, A. C. GOUDIE, D. A. KOSS, J. A. OLSON, A. P. RICKETTS, E. J. TYNAN, N. D. WALSHE, W. C. WERNAU & T. K. SCHAAF: Semduramicin: Design of a new anticoccidial ionophore. Program and Abstracts of the 2nd S.I.M. Int. Conf. on Biotech. of Microb. Prod. with Novel Pharmacolog. and Agrobiol. Activities. No. S-21, p. 25, Sarasota, Oct. 14~17, 1990
- 6) TYNAN, E. J.; T. H. NELSON, R. A. DAVIES & W. C.

WERNAU: The direct production of semduramicin by a mutant of Actinomadura roseorufa. Program and Abstracts of the 2nd S.I.M. Int. Conf. on Biotech. of Microb. Prod. with Novel Pharmacolog. and Agrobiol. Activities. No. P-13, p. 31, Sarasota, Oct. $14 \sim 17$, 1990

- CULLEN, W. P.; H. MAEDA, J. C. RUDDOCK & J. TONE (Pfizer): Polycyclic ether antibiotic. U.S. 4,746,650, May 24, 1988
- RUDDOCK, J. C.; L. R. CHAPPEL, W. P. CULLEN, K. S. HOLDOM, H. MAEDA, J. TONE, E. WHIPPLE & D. J. WILLIAMS: UK-58,852, a novel ionophore. Fermentation, isolation and biological properties. Program and Abstracts of the 2nd S.I.M. Int. Conf. on Biotech. of Microb. Prod. with Novel Pharmacolog. and Agrobiol. Activities. No. P-15, p. 31, Sarasota, Oct. 14~17, 1990
- TYNAN, E. J. (Pfizer): Novel acidic polycyclic ether antibiotics and microorganisms useful in the production thereof. Eur. Pat. Appl. 400915, Dec. 5, 1990
- SIEGEL, M. M.; W. J. MCGAHREN, K. B. TOMER & T. T. CHANG: Applications of fast atom bombardment mass spectrometry and fast atom bombardment

mass spectrometry—mass spectrometry to the maduramicins and other polyether antibiotics. Biomed. Environ. Mass Spectrom. 14: 29~38, 1987

- 11) DIRLAM, J. P.; A. M. BELTON, J. BORDNER, W. P. CULLEN, L. H. HUANG, Y. KOJIMA, H. MAEDA, H. NISHIDA, S. NISHIYAMA, J. R. OSCARSON, A. P. RICKETTS, T. SAKAKIBARA, J. TONE & K. TSUKUDA: CP-84,657, a potent polyether anticoccidial related to portmicin and produced by *Actinomadura* sp. J. Antibiotics 43: 668~679, 1990
- 12) AJAZ, A. A.; J. A. ROBINSON & D. L. TURNER: Biosynthesis of the polyether ionophore antibiotic monensin A: assignment of the carbon-13 and proton NMR spectra of monensin A by two-dimensional spectroscopy. Incorporation of oxygen-18 labelled molecular oxygen. J. Chem. Soc. Perkin Trans. I 1987: 27~36, 1987
- 13) MIZUTANI, T.; M. YAMAGISHI, K. MIZOUE, A. KAWASHIMA, S. ŌMURA & M. OZEKI: Studies on the ionophorous antibiotics. XXVII. The structures of TM-531B (4'-O-demethyldianemycin) and TM-531C (3'-hydroxydianemycin), new polyether antibiotics containing sugars other than 4-O-methyl amicetose. J. Antibiotics 34: 1369~1373, 1981